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Ductile strain rate measurements document long-term strain
localization in the continental crust
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Quantification of strain localization in the continental lithosphere is hindered

by the lack of reliable deformation rate measurements in the deep crust. Quartz-strain-
rate-metry (QSR) is a convenient tool for performing such measurements once calibrated.
We achieve this calibration by identifying the best piezometer-rheological law pairs that
yield a strain rate in agreement with that measured on the same outcrop by a more di-
rect method taken as a reference. When applied to two major continental strike-slip shear
zones, the Ailao Shan-Red River (ASRR, southwest China) and the Karakorum (north-
west India), the calibrated QSR highlights across-strike strain rate variations, from <

1x 10715571 in zones where strain is weak, to > 1 x 10

713571

in zones where it is lo-

calized. Strain rates integrated across the shear zones imply fast fault slip rates on the
order of 1.1 cm yr—! (Karakorum) and 4 cm yr~! (ASRR), proving strong strain local-

ization in these strike-slip continental shear zones.

1. INTRODUCTION

The extent to which deformation in the continental crust
is strongly localized in narrow zones, as it is in the oceanic
lithosphere, remains debated. While some argue that conti-
nental deformation during collision is mostly localized along
few narrow discontinuities (e.g., Tapponnier et al., 2001),
the continental crust and lithosphere are commonly modeled
as a viscous media in which deformation is pervasive (e.g.,
Beaumont et al., 2001). This discussion is fundamental to
our knowledge of the continent deformation and evolution,
but is hindered by the lack of deformation rate measure-
ments in the deesp crust. If rates lower than 107 '5s™! or
higher than 1072571 are used to define stable or highly de-
forming zones (Pfiffner and Ramsay, 1982), they have been
effectively measured only in a handful of cases (Christensen
et al., 1989; Miiller et al., 2000; Sassier et al., 2009). There
is therefore a need to validate a method of measuring strain
rates that could be easily used in various geological settings.

Because quartz is ubiquitous in the continental crust,
the quartz-strain-rate-metry (QSR) method, that yields the
strain rate from the size of recrystallized quartz grains know-
ing the deformation temperature, could provide measure-
ments in many geological contexts. However, the QSR re-
sults are not reliable because they vary by five orders of
magnitude depending on the piezometer-rheological law pair
considered. It is therefore necessary to benchmark the QSR
using a geological setting where the strain rate is indepen-
dently known and the thermodynamic conditions accurately
defined. This is why we first calibrate the QSR method
to determine the most accurate piezometer-rheological law
pair, prior to using this calibration to quantify the strain
rate variations in two major strike-slip shear zones.
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2. CALIBRATING THE QSR METHOD

Experimental studies show a close relationship (called
piezometer) between the average size, D, of quartz crystals
recrystallized during dislocation creep at medium to high
temperatures and differential stress, o (Shimizu, 2008; Stipp
and Tullis, 2003; Twiss, 1977):

c=KD™* (1)

where p and K are determined experimentally or theoret-
ically. The QSR method combines this equation with the
ductile rheological law in the same thermodynamic condi-
tion, that links the strain rate, ¢, the differential stress, o,
the temperature, T' (Gleason and Tullis, 1995), and in some
studies the water fugacity, fm,o (Hirth et al., 2001; Rutter
and Brodie, 2004):

= De/dt = A(0)" (fis0)" exp (7 @)

#r)

where the activation energy, Q, the prefactor, A, and the
exponents n and m are determined experimentally, and R is
the ideal gas constant. Combining Equations 1 and 2 yields
the strain rate é from the grain size, D, when the deforma-
tion temperature T is known (e.g., Stipp et al., 2002).

The ~ 1000-km-long Miocene left-lateral Ailao Shan-Red
River (ASRR) shear zone has been interpreted as a plate-
like strike-slip boundary separating the Indochina and South
China blocks (Fig. 1A) (e.g., Leloup et al., 1995). The
shear zone crops out as an ~ 10-km wide belt of high-grade
mylonitic gneiss framed by slightly deformed Mesozoic sed-
iments to the north and schists to the south (Fig. 1B).
Within the mylonites, the site C1 yielded the exceptional
opportunity to measure a strain rate from the deformations
and ages of three sets of synkinematic dikes (Sassier et al.,
2009). A constant strain rate of 3.5 4 0.5 x 107 **s™! was
recorded between 29.9 and 26.8 Ma, as well as between 26.8
and 22.6 Ma. This strain rate serves as a reference to cali-
brate the QSR method applied on two quartz ribbons (YY33
and YY35) sampled 4 m apart at the same site (see Fig. DR1
in the GSA Data Repository® for precise sample location).
The two quartz ribbons are parallel to the quartzo-feldspatic
mylonitic banding. In these rocks, quartz is weaker than
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Figure 1. A: Ailao ShanRed River (ASRR; southwest China) and Karakorum (K; northwest India)
shear zones. B: Cross section of the ASRR containing site C1, where the quartz-strain-rate-metry (QSR)
method has been calibrated. Adapted from Leloup et al. (1995). The shear zone is framed by the Ailao
shan fault (AF) and the Red River fault (RRF). Other samples for which shear strains are measured (see

Fig. 5A) are also located.

feldspar but stronger than biotite. The absence of clasts or
of a load bearing framework suggests that deformation oc-
curred in the deformation regime 2 of Handy (1990) where
all minerals participate to the deformation.

Grain sizes and shapes of the quartz crystals constituting
the two ribbons were measured on thin sections using tech-
niques allowing mapping the grains (electron backscattered
diffraction) and their boundaries (optical microscopy). The
two samples deformed by dislocation creep accommodated
first by grain boundary migration and, later during cooling,
by subgrain rotation. The grains recrystallized in the first
regime are characterized by amoeboid shapes; in the second
regime by angular shapes with angles close to 120°. Aver-
age two-dimensional diameters of 62.3 £ 3.0pum (YY33) and
58.1+£2.4pm (YY35) were measured for the grains deformed
by subgrain rotation (Fig. 2). In the case of the piezometers
based on the three-dimensional diameters we apply a stereo-
graphic correction increasing the grain sizes by a factor 4/1I1.

The thermodynamic conditions during the recrystalliza-
tion by subgrain rotation are obtained by combining several
methods (Fig. 3):

(1) The quartz crystallographic preferred orientation sug-
gests an activation of the <a> basal glide system, with mi-
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Figure 2. Sample YY33 (A) and YY35 (B) quartz mi-
crostructures on thin-section microphotographs (top) and
grain-size distributions (bottom) (Site C1, Ailao Shan-
Red River shear zone, southwest China). Sum of in-
dividual normal distributions (dashed Gaussian curves)
yields closest size distribution to measured histogram
(gray bars). Recrystallization mechanisms fields: BLG-
bulging; SGR- subgrain rotation; GBM- grain boundary
migration according to Stipp et al. (2010).

nor contribution from the <a> prismatic glide system in
both samples. This type of deformation occurs for tempera-
tures between 400°C and 500°C (Pennacchioni et al., 2010;
Stipp et al., 2002).

(2) The TitaniQ thermobarometer (Thomas et al., 2010;
Wark and Watson, 2006), for an average Ti content mea-
sured by laser ablation, with inductively coupled plasma-
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Figure 3. Pressure-temperature (P-T) conditions for
the quartz recrystallization event by subgrain rotation
at site C1 (Ailao ShanRed River shear zone, southwest
China). Samples YY33 and YY35 recrystallization con-
ditions (7" = 425 4+ 38°C, P = 130 £ 80 MPa, black
cross are given by the intersection of the TitaniQ thermo-
barometer (labeled TiQ; data are available in Table DR1
[see footnote 1]) and YY35 fluid inclusions isochors (la-
beled F.I.; data available in Table DR2). This P-T field
is consistent with the quartz deformation temperature in-
dicated by the crystallographic preferred orientation (la-
beled CPO; details available in Fig. DR2 [see footnote
1]), the temperature at which a-quartz recrystallizes by
subgrain rotation, and with the central Ailao Shan P-T-
time path from Leloup et al. (2001) (ages in Ma in white).
Recrystallization mechanisms as in Figure 2. Tempera-
tures for glide systems activation from Pennacchioni et
al., (2010) and Stipp et al. (2002).
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mass spectrometry (LA-ICP-MS) of 14.34+0.4 ppm in YY33
and 14.6 = 0.9 ppm for YY35, and a Ti activity ario, =
0.8 0.2 yields a possible domain of P-T equilibrium condi-
tions. A Ti activity of > 0.6 is appropriate for most rocks
containing a Ti-rich phase (rutile, illimenite, sphene) (Wark
and Watson, 2006) or biotite.

(3) For YY35, microthermometry of primary and sec-
ondary fluid inclusions hosted by the quartz provides a sec-
ond (isochoric) constraint (Bodnar, 1993) considering the
measured homogenization temperatures of 312 £+ 29°C and
salinities of 6.8 & 1.1 wt% NaCl.

For YY35, the thermobarometers intersect at T' = 425 +
38°C and P = 130 + 80 MPa (Fig. 3). YY33 data are
compatible with these P-T conditions, that are also com-
patible with the P-T-time path previously proposed for the
central Ailao Shan (Leloup et al., 2001), suggesting that
subgrain rotation recrystallization occurred around 23 Ma
when our reference strain rate was effective. In this context,
recrystallization occurs during a retrograde evolution after
high temperature (> 500°C) deformation, in which case the
TitaniQ thermobarometer is more easily reset than during
prograde metamorphism (Grujic et al., 2011).

Using these grain sizes and P-T conditions, several QSR
strain rates are calculated with four piezometers (sets of K
and p parameters [Equation 1]) and six power flow laws (sets
of Q, A, n, and m parameters [Equation 2]) published for
quartz; i.e., 22 pairs (Fig. 4). The two samples yield simi-
lar paleo-strain rates, but which vary between 2.6 x 10'8s~*
and 4.5 x 107*®s71 depending on the piezometer-flow law
pair. Taking the temperature and grain size uncertainties
into account, as well as those of the piezometers and flow
laws, yields relatively large error bars on the final result, the
main error source being the uncertainty on the deformation
temperature (Fig. 4). Most pairs underestimate the site C1
reference strain rate (3.5 4 0.5 x 107 **s™*). The Stipp and

X-3

Tullis (2003) experimental piezometer corrected for an ex-
perimental bias (Holyoke and Kronenberg, 2010) yields sat-
isfactory results when associated with Paterson and Luan
(1990) flow law, while Shimizus (2008) theoretical piezome-
ter gives accurate results when combined with Hirth et al.
(2001) flow law. For applications on natural shear zones we
rely on that latter pair because its flow law is constrained
both by experimental and natural data.

3. STRAIN RATE MEASUREMENTS
FOR TWO MAJOR SHEAR ZONES

By using the QSR method that we have calibrated, we
can address the problem of localization of the deformation
on two major shear zones for which fast and slow fault slip
rates have both been proposed. For all samples, the average
grain sizes were precisely measured. The thermodynamic
conditions were constrained by the intersection between Ti-
taniQ thermobarometry and P-T-time paths from previous
studies and compared with temperature conditions expected
from the crystallographic preferred orientations.

3.1. The Ailao Shan-Red River Shear Zone

The Miocene slip rate of the ASRR has been suggested
to be to be rather fast, between 2.8 and 5.3 cm yr ™' using
geological markers, plate tectonic reconstructions, and cool-
ing histories (e.g., Leloup et al., 2001), or conversely to be
slower than 1.4 cm yr~! using different geological markers
(e.g., Clift et al., 2008). If deformation was homogeneous
in space and time within a 10-km wide shear zone, this
would correspond to shear rates between 8.9 x 10714571 and
1.7 x 107571, or below 4.4 x 10~ *s™!, respectively. Be-
sides the two samples used to calibrate the QSR method at
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Figure 4. Results of the quartz-strain-rate-metry (QSR) method on samples YY33 and YY35 at site
C1 (Ailao ShanRed River shear zone [ASRR], southwest China). Strain rate measured at site C1 (Sassier
et al., 2009) and average shear rates for ASRR are plotted for comparison. See Table DR3 (see foot-
note 1) for piezometers parameters: S&T-Stipp and Tullis, 2003; S&Tc-Stipp and Tullis, 2003, corrected
by Holyoke and Kronenberg, 2010; T-Twiss, 1977; S-Shimizu, 2008. See Table DR4 for rheological
parameters: R&B-Rutter and Brodie, 2004; L&P-Luan and Paterson, 1992; G&T-Gleason and Tullis,
1995; G&Tc-Gleason and Tullis, 1995, corrected by Holyoke and Kronenberg, 2010; H-Hirth et al., 2001;
P&L-Paterson and Luan, 1990. When needed, the water fugacity was assumed equal to the hydrostatic
pressure. Black frames indicate the piezometer-low law pairs that yield strain rates in agreement with
the reference value. Thin error bars are the total uncertainties; bold bars are linked to the uncertainty

on the deformation temperature (T) only.
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Figure 5. Sections across two major shear zones showing the local strain rates measured with the quartz-

strain-rate-metry (QSR) method (black dots), using the Shimizu (2008)Hirth et al.

(2001) piezometer

rheological law pair, with respect to the lithology (Sc-schist, M- mylonites, Se-sediments, G-undeformed
granite, Me-metamorphic). See Table DR5 (see footnote 1) for detailed results. Dot-dashed lines indicate
shear rate profi les used for the calculation of the integrated shear rates. A: Ailao ShanRed River (ASRR;
southwest China) shear zone (see Fig. 1B). Light and dark gray horizontal bands indicate bulk strain
rates calculated for a 10-km-wide shear zone, respectively inferring fast fault slip rates between 2.8 and
5.3 cm/yr, or slow ones between 0.5 and 1.4. B: Karakorum shear zone, at the latitude of Tangtse village
(India). Light and dark gray horizontal bands indicate bulk strain rates calculated for a 8-km-wide shear
zone, respectively inferring fast fault slip rates between 0.7 and 1.1 cm/yr, or slow ones between 0.1 and

0.5 cm/yr.

site C1, six others were taken to estimate the strain rates
across the shear zone (Fig. 1B).

When plotted along a cross section of the shear zone,
strain rates show a progressive mcrease from 2.5 x 107 %5~
in the southwest to 1.3 x 107*2s7! in the northeast (Flg.
5A), that can be approximated as a linear increase of log(é).
This suggests a strong deformation localization along the
northeast border of the shear zone and corresponds to an
integrated fault slip rate on the order of 4 cm yr™ " across
it. Such velocity is in the high range of the slip rates pro-
posed for the ASRR. The differential stresses according to
Equation 1 range between ~ 20 and ~ 52 MPa.

3.2. The Karakorum Shear Zone

The > 800-km-long right-lateral Karakorum fault zone
bounds Tibet to the west (e.g., Tapponnier et al., 2001) (Fig.
1A). Its Neogene- Quaternary slip rate is disputed, with val-
ues deduced from %eologlcal and geodetlc data ranging from
below 0.5 cm yr~" up to 1.1 cm yr , Boutonnet et
al., 2012; Chevalier et al., 2005; erght et al., 2004). In
the Tangtse area (India), deformation was absorbed within
the two narrow Tangtse and Muglib mylonitic strands (e.g.,
Boutonnet et al., 2012) (Fig. 5B). Five QSR measurements
confirm this 1mpresswn with values above 1.6 x 107 °s™
in the two mylonitic strands, and below 1.0 x 107*
elsewhere (Fig. 5B). The large size of recrystallized quartz
grains in sample LA42 has been taken to imply a very low
deformation rate. However, this large size may also indicate
that the grain deformed by grain boundary migration, in
which case the QSR method that we calibrated for subgrain
rotation could be less adequate. The measured shear rates
correspond to an integrated fault slip rate between 0.9 cm
yr~' and 1.3 cm yr~ !, close to, but somewhat higher than,
previous estimates. The differential stresses according to
Equation 1 within the Karakorum shear zone are similar to
those of the ASRR, ranging between ~ 24 and ~ 64 MPa.
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4. CONCLUSION

We calibrated the QSR method in one outcrop of known
strain rate and deformation temperature in which various
piezometers-flow laws pairs can be tested. For quartz re-
crystallization in the subgrain rotation regime, the most ac-
curate results are obtained by combining Shimizus (2008)

piezometer with Hirth et al.s (2001) power flow law. While
the absolute deformation rates must be considered with
some caution, their relative variations appear robust. As
quartz ribbons are ubiquitous, crustal paleodeformation
rates can now be evaluated with an unprecedented spatial
resolution.

In the case of the ASRR and Karakorum shear zones, de-
formation rates appear to be variable across strike in accor-
dance with the qualitative field observations, with narrow (a
few kilometers wide) zones with strain rates of > 10713571
where most of the deformation localizes. The strain rates in
these kilometer-wide zones are more than 500 times higher
than in the other parts of the exposed shear zones, and
more than 1000 times higher than in the shear zone sur-
roundings. This implies that a 1-km-wide zone of local-
ized strain can accommodate as much deformation as a
1000-km-wide block. For the two studied cases, the shear
rates, when integrated across strike, are compatible with the
fastest slip rates inferred from geologic and geodetic consid-
erations. More strain rate measurements will be crucial for
more thoroughly document the ratio between diffuse and lo-
calized deformation, but geodynamic models should account
for the strong strain localization that seems to characterizes
deformation of the continental lithosphere.
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TABLE DR1. Ti-IN-QUARTZ MEASUREMENTS

Samples characteristics Analytical characteristics Average Ti contents (ppm)
Name Matrix TiO,-contents (%) / mineral Number of points Accuracy for Ti (% for NIST 612) Ti from *'Ti (ppm) err (10) Ti from **Ti (ppm) err (10) Ti from *Ti (ppm) err (1o0) Average Ti (ppm)
YY35 0.65 / titanite, oxydes, biotite 10 0,1 14.8 0.4 N.A* N.A* 13.7 0.5 14304
YY33 0.65 / titanite, oxydes, biotite 9 0,1 15.0 0.7 N.A* N.A* 14.1 1.0 14.6 0.9
Yu29 N.A. /oxydes, biotite 10 0,3 27.4 2.0 N.A* N.A* 244 2.1 259+2.1
YU73 N.A. /oxydes, biotite 8 0,2 4.8 0.7 4.0 0.4 4.7 0.5 45%0.5
Yu42 N.A. /oxydes, biotite 8 0,2 10.5 17 10.2 26 9.5 2.1 10121
Yu44 N.A. /oxydes 9 0,1 6.3 0.5 N.A* N.A* 5.1 0.3 57+0.4
YY54 N.A. /oxydes, biotite 7 0,2 61.9 1.1 61.5 13 61.6 29 61.7+1.8
YY72 N.A. /oxydes, (biotite) 12 0,2 40.8 4.0 40.8 3.1 40.7 3.8 40.8 £3.6
LA26 N.A. /(oxydes) 13 0,2 6.4 0.3 5.9 0.4 6.5 0.5 6.3+04
LA30 N.A. ftitanite, (oxydes), biotite 17 0,2 5.0 0.5 4.3 0.4 5.0 0.6 4.8%0.5
LA42 N.A. /(biotite) 12 0,2 1.9 0.4 1.4 0.2 1.9 0.3 1703
LA59 N.A. /oxydes, biotite 13 0,2 4.6 0.8 3.6 0.6 4.6 0.8 4.3%0.7
LA47 N.A. /oxydes, biotite 14 0,2 4.4 0.5 3.9 0.7 4.5 0.3 4.3%0.5

*N.A. = not available

Ti concentrations in quartz are determined by ICP-MS (Element XR) coupled to a laser ablation system (Microlas platform and Excimer CompEx Laser, spot diameters of 33 microns and repetition rates of 10 Hz) at the Geosciences Montpellier laboratory (France) and at IUEM
Brest (France).

The alignment of the instrument and mass calibration is performed before every analytical session using the NIST 612 reference glass. USGS basalt glass reference materials BCR and BIR are used during experiment as standards.

Masses isotopes are analyzed over 20 cycles for each analysis. ’Al, Si, “*Ca and ’Li isotopes are used to monitor the quartz ablation, and *Rb, ®Sr and "*'Ba to control if other mineral inclusions are also ablated.

The internal standard is measured by assuming that the sum of all quartz elements amount to 100%



TABLE DR2. FLUID INCLUSIONS MICROTHERMOMETRY RESULTS - SAMPLE YY35

Fluid inclusions types Temperatures (°C) ** Isochors: P (bar) = aT(°C) +b *** Salinity ***
Fluid inclusion group * Characteristics Bubble size (%) melting Homogenization a b wt% NaCl mol/kg
G1 Primary F.I. 18.52 -4.3 311.8 10.4 -3195.5 6.8 1.2
11 measurements isolated 10: 0.5 10: 7.7 +0.9 +131.8 +1.1 +0.3
G2 Secondary F.I. 12.37 -4.2 311.7 10.6 -3195.5 6.7 1.2
88 measurements aligned along trails 10: 0.6 10: 30.5 +0.9 +131.8 +1.1 +0.3

* Inclusion groups assemble inclusions with similar geometry, orientation and composition which we interpret as cogenetic

** Measurements are carried out on a Linkam Inc. Heating-Freezing Stage at the LGL-TPE (Lyon). Calibration is performed from synthetic fluid inclusions containing pure water and a CO,-H,O mixing. The
phase transitions of the fluid inclusions are observed in thick sections (100 um-thick) with an optical microscope between -100°C and +400°C.

*** |sochor equations and salinities are calculated using Zhang and Frantz (1987) and Bodnar (1993)
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Table DR3. Experimentally and theoretically derived parameters for piezometers (equation 1) compiled from the literature.

Piezometer Calibration type Recrystallization regime K (Mpa umP) p

Stipp and Tullis (2003) Experimental Bulging 669 0.79
Experimental - Corrected by

Stipp and Tullis (2003) Holyoke and Kronenberg Bulging 480 0.79
(2010)

Twiss (1977) Theoretical Subgrain rotation 603 0.68

Nucleation by Subgrain rotation and
Shimizu (2008) Theoretical Growth by Grain Boundary Migration 217 0.8
of a-quartz




Table DR4. Experimentally derived parameters for deformation power flow-laws (equation 2) compiled from the literature.

Flow law Calibration type Conditions Q (kJ mol™) A (MPa™ s) n m
Luan and Paterson (1992) Experimental Dislocation creep 152 4.0 x 10710 4 0
Paterson and Luan (1990) Experimental Dislocation creep 135 6.5 x 1078 3 0
Hirth et al. (2001) Experimental Dislocation creep 135 6.3 x 10712 4 1
Rutter and Brodie (2004) Experimental Dislocation creep 242 1.2 x 107 3 1
Gleason and Tullis (1995) Experimental Dislocation creep 223 1.1 x 10-4 4 0
Gleason and Tullis (1995) Experimental - Corrected by Dislocation creep 223 5.1 x 107 4 0

Holyoke and Kronenberg (2010)




TABLE DR5. QSR-S-H STRAIN RATE MEASUREMENTS IN THE ASRR AND KFZ STRIKE-SLIP SHEAR ZONES

Quartz vein  Recrystalliza - Mean grain size Mean grain shize ] Method of i Hydrostatic . o
Shear zone/ sample Lat/Long size tion regime® me_asured cor_rected Stress® (MPa) Temperature Temperature (°C) Pressure (MPa) pressure Strain rate (s”)
(microns) (microns) determination (MPa)
ASRR
YY33 23.55441° N mm SGR 62,3 79.3 36.1 Ti-in-Quartz + 425 130 34 2.9E-14
error (1 sigma) 101.91674° E +1.8 +4.0 6.7 P-T path +40 +80 +25 max 2.0E-13
min 3.1E-15
YY35 23.55441° N cm SGR 58,1 74.0 38.1 Ti-in-Quartz + 425 130 34 3.6E-14
error (1 sigma) 101.91674° E 2.4 +3.5 7.2 microthermometry +38 +80 +25 max 2.4E-13
min 4.1E-15
Yuas 23.530007° N om SGR 64,4 82.0 410 Ti-in-Quartz + 367 110 22 3.7E-15
error (1 sigma) 101.910773° E 2.7 +4.0 +6.7 P-T path +40 +80 +15 max 2.0E-14
min 5.5E-16
Yurs 23.530007° N mm SGR 59,9 76.3 454 Ti-in-Quartz + 352 100 18 2.5E-15
error (1 sigma) 101.910773° E +3.0 +45 7.3 P-T path +40 +80 +13 max 1.3E-14
min 3.7E-16
Yuaz 23.530007° N mm SGR 79,2 100.9 316 Ti-in-Quartz + 402 120 32 7.0E-15
error (1 sigma) 101.910773° E +2.0 +3.0 +55 P-T path +40 +80 +20 max 4.8E-14
min 7.9E-16
Yu29 23.767183° N mm SGR 39,8 50.7 46.6 Ti-in-Quartz + 469 150 50 5.2E-13
error (1 sigma) 101.710783°E +1.8 27 97 P-T path +44 +80 +25 max 4.5E-12
min 3.4E-14
YY54 24.277583°N mm SGR 64,9 826 27.2 Ti-in-Quartz + 544 180 79 6.5E-13
error (1 sigma) 101.378817°E +1.8 27 6.4 P-T path 51 +80 +32 max 4.8E-12
min 5.9E-14
YY72 24.43207°N om SGR 326 M5 50.7 Ti-in-Quartz + 507 160 72 2.7E-12
error (1 sigma) 101.25493°E 7 +3.0 +11.5 P-T path +59 +80 +31 max 27E-11
min 1.8E-13
KFZ
LA26 34.025028°N cm SGR 75,6 96.2 35.5 Ti-in-Quartz + 415 350 80 4.6E-14
error (1 sigma) 78.171832°E 16 2.3 57 P-T path +40 +80 +37 max 2.1E-13
min 8.7E-15
LA30 34.023361°N mm SGR 39,5 50.3 55.4 Ti-in-Quartz + 400 350 80 1.6E-13
error (1 sigma) 78.175861°E 2.3 3.5 +10.2 P-T path +40 +80 +37 max 7.6E-13
min 2.6E-14
LA59 34.052861°N cm SGR 913 116.3 28.8 Ti-in-Quartz + 393 350 80 9.2E-15
error (1 sigma) 78.245889°E 25 3.7 +4.9 P-T path +40 +80 +37 max 4.4E-14
min 1.6E-15
LA47 34.009139°N mm SGR 32.0 40.8 66.6 Ti-in-Quartz + 394 350 80 2.6E-13
error (1 sigma) 78.303111°E 1.5 22 117 P-T path +40 +80 +37 max 1.2E-12
min 4.6E-14
LA42 33.971194°N cm SGR or GBM 134,2 170.9 241 Ti-in-Quartz + 347 350 80 7.3E-16
error (1 sigma) 78.376750°E 2.1 3.1 +3.6 P-T path +40 +80 +37 max 3.1E-15
min 1.4E-16

Note: ASRR= Ailao Shan Red River ; KFZ= Karakorum Fault Zone; Recrystallization regime: SGR= sub-grain rotation; BLG= bulging.

Uncertainty calculation takes into account: the experimental measurement errors (LA-ICP-MS, microthermometry, grain size, P-T path, EBSD, Fabric analyser), the errors of equations calibration when available

(piezometer, flow law, thermo-barometer) and they are propagated to measure the strain rate.
“ The recrystallization regime is determined by the shape of the considered grains following criteria of Stipp et al. (2002). ® Stereographic correction
Stress calculated using: °Shimizu (2008) piezometer

Strain rates calculated using: °Hirth et al. (2001) power flow law






